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Abstract: PageRank is a basic metric used to measure the importance of web pages. It is an iterative method, and computed 
by Power method. Power method converges too slowly for the true structure of web. This issues encourages to find out some 
other iterative methods to accelerate PageRank computation. In this paper, we present a novel method that is combination of 
Quadratic Extrapolation and Gauss-Seidel called QE-GSeidel method which accelerate the convergence of PageRank 
method. From numerical experiment we show that QE-GSeidel method takes almost 60-65% less number of iteration and 25-
30% less CPU time than Power, and takes 50-55% less number of iteration and 15-20% less CPU time than Gauss-Seidel in 
PageRank computation. 
 
Keywords: PageRank, Power method, Gauss-Seidel method, Quadratic Extrapolation method. 
 
Introduction 
The PageRank algorithm is used to compute the “importance” or ranking of web pages. Now, it has become a basic method 
for web search engine to compute the rank of pages [1, 2]. The basic idea of the PageRank algorithm is to compute the 
principal eigenvector of hyperlink matrix of web graph. Due to exponential growth of web, PageRank computation becomes 
very crucial task and it takes several days in computation. There is requirement to accelerate the computation of PageRank so 
that search engine respond to fast query result. Power method is one of the basic numerical method that is used to compute 
PageRank algorithm [2]. However, it is well known that convergence rate of the power method is very slow when the 
damping factor value close to one [3, 4, 5]. Therefore it becomes necessary to accelerate the convergence of PageRank 
computation by developing some efficient method. 
Recently there are many researchers try to explore some other efficient numerical method to accelerate the convergence of 
the PageRank computation. Kamvar et al, elaborate adaptive method to accelerate the convergence of PageRank computation 
[6]. In this method PageRank of those pages are not recomputed at every iteration that are already converges in previous 
iterations. This method accelerate the convergence of PageRank method but the pages that converge in earlier iteration gives 
inappropriate result. The Power-Arnoldi PageRank algorithm combines the power method with the thick restarted Arnoldi 
extrapolation algorithm to speedup PageRank computation [7]. The Arnoldi type algorithm is based on restarted krylov 
subspace method. It combines the Arnoldi process and singular value decomposition of larger eigenvalues [7, 8]. Among 
these strategies, extrapolation acceleration methods have been implemented constantly. In 2006, Sependar et al, proposed an 
extrapolation techniques that off estimate the eigenvalues to accelerate the convergence of power method to compute 
PageRank algorithm [9]. However, this method does not perform efficiently when extrapolation applied very frequently, and 
for damping factor close to one. Motivated by these research, we produce a new extrapolation method called Quadratic 
Gauss-Seidel i.e. the combination of Quadratic extrapolation [9] and Gauss-Seidel method to speed up the convergence of 
Gauss-Seidel method. Furthermore, this combined method performs very efficiently in PageRank computation. In this paper, 
we combined Quadratic extrapolation with Gauss-seidel to compute PageRank problem. This algorithm is called as 
quadratic-extrapolated Gauss-Seidel that accelerates the convergence of PageRank method. The rest of the paper is organized 
as follows: In Section 2, discuss PageRank computation. In section 3, we discuss quadratic-extrapolation Gauss-seidel 
method based on hyperlink matrix then implement it to compute the PageRank. The numerical experiment is provided in 
section 4 that observes the numerical behavior of proposed algorithm. Finally, in section 5 some concluding remarks and 
future works are presented. 
 
Preliminaries: PageRank Method 
In this section we discuss the basic definition of PageRank and how it is computed by using numerical methods. The basic 
definition of PageRank state that “A web page is important or get higher rank if it is pointed by other important web pages”. 
Let the hyperlink matrix ܪ	 ∈ 	ܴ௡×௡ of the web graph defined as following equation (1) [2]: 
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൫ℎ௜௝൯	ܪ																																																															 = 	 ቊ
1
ൗ(݅)݃݁݀ݐݑܱ 	 , ݆	݋ݐ	ݏݐ݊݅݋݌	݅	݁݃ܽ݌	݂݅

0																						, 																		݁ݏ݅ݓݎℎ݁ݐ݋
																																																								(1) 

 
In equation (1), ܱ݃݁݀ݐݑ(݅) denotes number of out-going links of page	݅. If a web page ݅ does not contain any out-going link, 
then corresponding entry i.e. ݅௧௛ row of ܪ will be zero and page ݅ is called as dangling web pages. Dangling web pages create 
problems in the PageRank computation. Due to these web pages we can’t compute unique PageRank vector for web graph. 
To solve this issues, simply convert the hyperlink matrix ܪ to ܪ′ by following equation (2) [3, 4]: 
 

ᇱܪ																																																																																						 = ܪ +  (2)																																																																																													(்ݖ)݀
In equation (2),	ݖ ≥ ௜ݖ	,0	 	 ∈ 	ܴ௡×௡ with ∥ ݖ ∥ଵ= 1 and  ݀ = ݀௜ ∈ ܴ௡×௡ with 

																																																																																						݀௜ = 	 ൜1, (݅)݃݁݀ݐݑ݋	݂݅ = 0
0, 													݁ݏ݅ݓݎℎ݁ݐ݋ 																																																																(3) 

 
Now ܪᇱ becomes a row stochastic matrix i.e.	ܪᇱ݁ = ݁, where ݁ is an identity vector of ݊ × 1 i.e. ݁ = 	 (1, 1, 1, … , 1)் . To 
ensure the irreducibility and aperiodicity of	ܪᇱ, a damping factor ߙ and a personalization vector ݌ are introduced to establish 
the final matrix ܯ as in following equations. 

ܯ																																																																																 = ᇱܪߙ	) + (1− .(ߙ ݁. ்(்݌ 																																																																										(4) 
 

ܯ																																																																															 = ൫	ܪߙᇱ் + (1 − .݌.(ߙ ்݁൯																																																																										(5) 
 
Now matrix ܯ becomes column stochastic and irreducible. By Perrorn-Frobenus [2, 3], matrix ܯ gives maximum 
eigenvalue equal to one, with corresponding eigenvector is non-negative and unique. After normalization of this vector, it is 
called as PageRank vector	ߨ, satisfying the following equation (6) [4, 5]: 

ߨ.ܯ																																																																																 = 													,ߨ	 ∥ ߨ ∥ଵ= 1																																																																											(6) 
 
Equation (6) is an iterative method and it is implemented by basically Power method in PageRank computation [2, 3]. Many 
researchers have used several other algebraic method like Gauss-Seidel, Monte Carlo, SOR (Successive Over Relaxation) 
method to compute equation (6) [5, 10, 11]. In this paper we compute PageRank by using Gauss-Seidel method (Algorithm 
1) then we will apply quadratic extrapolation on it to accelerate the convergence of Algorithm (1). According to Gauss-Seidel 
algorithm for a starting PageRank vector	ߨ଴, the iterative Sequence vector i.e. ߨ௟ converges to a unique PageRank vector of 
matrix	ܯ	. 
 

Algorithm 1: PageRank computation using Gauss-Seidel [11]  

Input : 
 
 
 
 
 
 
 
 
 

 
଴ߨ =	Initial PageRank column vector zeroth iteration 
݊		 = Number of web pages in web graph 
		ߙ = Damping factor 
		ߜ = Tolerance value 
௝ܱ 	= [1/Out-degree of  ݆௧௛ web page] 
݈				 = Number of iteration 
݉		 = Dangling node  

Output: ߨ			 = Final PageRank column vector 
  
଴ = 1ൗ݊ߨ .1  // initialize PageRank vector 
2. ݈			 = 0 
3. while (݈݁݋ݐ ≤  (ߜ
4. l++ 
௜௟ߨ .5 = ∑ൣߙ	 ௝௟௝ழ௜ߨ ௝ܱ + 	∑ ௜௟ିଵ௝வ௜ߨ ௝ܱ൧ + ଵିఈ

௡
+ 	ఈ

௡
	[∑ ௠௟∀௠ழ௜ߨ ௠ܱ + 	∑ ௠௟ିଵ∀௠வ௜ߨ ௠ܱ]  

݈݁݋ݐ .6 = ௟ߨ|	݉ݎ݋݊ ,௟ିଵߨ	− 1| 
7. ݂݅	 converged  then ߨ௟ 
8. end 
9. return  ߨ௟ 
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Due to slow convergence of Power method, it is necessary to find out some fast numerical methods to compute PageRank. 
Hence it is important to design a simple and efficient algebraic numerical method that can accelerate convergence of 
PageRank algorithm. In the following section we applied Quadratic Extrapolation technique to Gauss- Seidel method to 
compute the PageRank value of matrix M, and we show by experimentally that it accelerate the convergence of Gauss-Seidel 
method to compute PageRank of web pages. 
 
Quadratic Extrapolated Gauss-Seidel PageRank Method  
We combined Quadratic extrapolation with Gauss-Seidel method to accelerate the convergence of PageRank computation 
[9]. We assume that matrix M has three eigenvectors ሬ݉ሬ⃗ ଵ, ሬ݉ሬ⃗ ଶ	ܽ݊݀	 ሬ݉ሬ⃗ ଷ, although the matrix has more than 3 eigenvectors, and 
the iteration ߨ௟ିଷ can be defined as the combination of these three by following equation (7): 

௟ିଷߨ																																																																																				 = 	 ܿଵ ሬ݉ሬ⃗ ଵ + 	ܿଶ ሬ݉ሬ⃗ ଶ + 	 ܿଷ ሬ݉ሬ⃗ ଶ																																																																		(7) 
 
In equation (7), ܿଵ = 1, ܿଶ,ܽ݊݀		ܿଷ are constant. The successive iterations can be solved by using equation (7) as follows: 

௟ିଶߨ																																																																																																	 =  (8)																																																																														௟ିଷߨ.ܯ			
௟ିଵߨ																																																																																																	 =  (9)																																																																														௟ିଶߨ.ܯ			
௟ߨ																																																																																																	 =  (10)																																																																																	௟ିଵߨ.ܯ			

 
We compute the value of ሬ݉ሬ⃗ ଵ, ሬ݉ሬ⃗ ଶ,ܽ݊݀	 ሬ݉ሬ⃗ ଷ by using Cayley-Hamilton theorem. Algorithm (2) shows that how we applied 
Quadratic Extrapolation in Gauss-Seidel method to accelerate the convergence of PageRank algorithm. 
 

Algorithm 2: PageRank computation using Quadratic-Extrapolated Gauss-Seidel method 
 
 
Input : 
 
 
 
 
 

Compute PageRank value of every web page of n*n hyperlink matrix H with initial PageRank vector	ߨ଴, given damping 
factor value	ߙ, and tolerance norm	ߜ. We applied quadratic extrapolation at every t iteration. 
଴ߨ =	Initial PageRank column vector zeroth iteration 
݊		 = Number of web pages in web graph 
		ߙ = Damping factor 
		ߜ = Tolerance value 
௝ܱ 	= [1/Out-degree of  ݆௧௛ web page] 
݈				 = Number of iteration 
݉		 = Dangling node 

Output: ߨ			 = Quadratic Gauss-Seidel method 
  
଴ = 1ߨ .1 ݊ൗ  // initialize PageRank vector 
2. ݈			 = 0 
3. while (݈݁݋ݐ ≤  (ߜ
4. l++ 
5. copy  (ܿߨ,ߨ_ݎݎݑ) 
௜௟ߨ_ݎݎݑܿ .6 = ∑ൣߙ	 ௜௟௝ழ௜ߨ ௝ܱ + 	∑ ௜௟ିଵ௝வ௜ߨ ௝ܱ൧+ ଵିఈ

௡
+ 	ఈ

௡
	[∑ ௠௟∀௠ழ௜ߨ ܱ௠ + 	∑ ௠௟ିଵ∀௠வ௜ߨ ܱ௠]  

݈݁݋ݐ .7 = ௟ߨ_ݎݎݑܿ|	݉ݎ݋݊ ௟ିଵߨ_ݎݎݑܿ	− , 1| 
ݐ%݈)	ℎ݈݅݁ݓ .8 == 0) 
9. // begin Quadratic extrapolation procedures. 
10. Copy (݊݁ߨ_ݎݎݑܿ ,ߨ_ݐݔ) 
௜௟ߨ_ݐݔ݁݊   .11 = ∑ൣߙ	 ௜௟௝ழ௜ߨ_ݐݔ݁݊ ௝ܱ + 	∑ ݐݔ݁݊ − ௜௟ିଵ௝வ௜ߨ ௝ܱ൧+ ଵିఈ

௡
+ 	ఈ

௡
	[∑ ௠௟∀௠ழ௜ߨ_ݐݔ݁݊ ܱ௠ +

	∑ ௠௟ିଵ∀௠வ௜ߨ_ݐݔ݁݊ ܱ௠] 
12. Copy (݊݁ߨ_ݐݔ݁݊ݐݔ, next_ߨ) 
13.   

௜௟ߨ_ݐݔ݁݊ݐݔ݁݊ =
∑ൣߙ	 ௜௟௝ழ௜ߨ_ݐݔ݁݊ݐݔ݁݊ ௝ܱ + 	∑ ௜௟ିଵ௝வ௜ߨ_ݐݔ݁݊ݐݔ݁݊ ௝ܱ൧+ ଵିఈ

௡
+ 	ఈ

௡
	[∑ ௠௟∀௠ழ௜ߨ_ݐݔ݁݊ݐݔ݁݊ ܱ௠ +

	∑ ௠௟ିଵ∀௠வ௜ߨ_ݐݔ݁݊ݐݔ݁݊ ܱ௠] 
14. //Calculate differences 
ܦ_ݎݎݑܿ .15 = −	(ߨ_ݎݎݑܿ)   ߨ	
ܦ_ݐݔ݁݊ .16 = −	(ߨ_ݐݔ݁݊)   ߨ	
ܦ_ݐݔ݁݊ݐݔ݁݊ .17 = (ߨ_ݐݔ݁݊ݐݔ݁݊) 	−   ߨ	
18. Υ = ,ܦ_ݐݔ݁݊]  [ܦ_ݎݎݑܿ
ଷߛ .19 = 1 
20. ቀఊభఊమቁ = 	−Υା݊݁ܦ_ݐݔ݁݊ݐݔ //Compute pseudo inverse using QR Factorization  
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଴ߚ .21 = 	 ଵߛ + ଶߛ + 	  	ଷߛ
ଵߚ .22 = 	 ଶߛ +  ଷߛ	
ଷߚ .23 = 		  ଷߛ
ߨ_݈݂ܽ݊݅ .24 = 	 +	ߨ_ݎݎݑ଴ܿߚ ߨ_ݐݔଵ݊݁ߚ	 +  ߨݐݔ݁݊ݐݔ݁݊_ଶߚ	
25. 	copy (ߨ,  (ߨ_݈݂ܽ݊݅
26. end 
27. return  ݂݈݅݊ܽ_ߨ 

 
From algorithm (2) it is clear that this method takes O (n)*number of iteration. It has minimal overhead over Gauss-Seidel 
method at every “a” iteration but in our experimental result it shows that this minimal overhead reduced 60% number of 
iteration as well as 30% time required to converge PageRank algorithm than Power method while 40% number of iteration 
and 26% time than Gauss-Seidel method. 
 
Experimental Result 
In this section, we have done numerical experiment that observe the performance of Quadratic extrapolated Gauss-seidel 
method in the PageRank Computation. All experiment have done in JAVA (JDK1.7) on an Intel(R) CoreTM i5 CPU with 6 GB 
RAM. In all experimental result we denote Quadratic extrapolated Gauss-Seidel, Gauss-Seidel as QE-GSeidel, GSeidel 
respectively. We have performed the experiment on following dataset [12]: 
 

Table 1: Datasets with their attributes 
 

Dataset No. of Web pages No. of Hyperlinks No. of Dangling Web pages 
Dataset (D1) 133279 396160 114507 
Dataset (D2) 325729 1497134 187788 

 
In all the experiment we have taken value of damping factor	ߙ = {0.6, 0.7, 0.8, 0.85, 0.9, 0.95}. Figure (1) and (2) shows the 
number of iteration and CPU time taken to converge the PageRank algorithm using QE-GSeidel, GSeidel, and Power 
method. QE-GSeidel method reduces the number of iteration needed to converge the PageRank computation for tolerance 
value 10-9 and 10-8 by 50% and 40% approximate respectively than GSeidel method. Figure (1) shows the QE-GSeidel takes 
almost 18% and 26% less time than GSeidel method and Power method to reach the convergence value of 10-9, and for 
tolerance value 10-8, it reduces almost 14% and 22% time than GSeidel and Power method. From figure 2(a), to reach a 
tolerance vale 10-9, QE-GSeidel saved 18% time over GSeidel method and 30% time over Power method. An important 
analysis of QE-GSeidel method is that it is necessary that we apply extrapolation very frequently. In these experiment we 
applied Quadratic extrapolation at every 10th iteration. So form figure 1 and 2, it is clear that although QE-GSeidel have some 
overhead in the computation with Gauss-Seidel method but it converges faster than Power method and Gauss-Seidel method 
in terms of CPU time as well as Number of iteration. 

  

Fig. 1(a) Fig. 1 (b) 
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Fig. 1(c) Fig. 1 (d) 

Fig. 1: Graph shows the number of iteration and time taken in the  PageRank computation for various tolerance value of D1 dataset 
 

 
Fig. 2 (a) Fig. 2 (b) 

 

Fig. 2 (c) Fig. 2 (d) 
Fig. 2: Graph shows the number of iteration and time taken in the  PageRank computation for various tolerance value of D2 dataset 
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Conclusion  
Web Search engines has become these days an integral part of information access today, that possess many interesting issues 
for the developers to provide an effective and efficient method to rank the web pages. PageRank is one of the famous web 
page ranking algorithm that computes rank based on authoritativeness of web pages by using hyperlink structure of web. 
Currently, exponential growth in web crawl repository, increase in crawling frequency, and Personalized PageRank required 
to speeding up the computation of PageRank. Quadratic extrapolation is an extrapolation technique of linear equation system 
that integrated into Gauss-Seidel method. In this method we applied Quadratic Extrapolation periodically in Gauss-Seidel to 
accelerate the convergence of PageRank. From experiment it shows that this method takes % less number of iteration and % 
less CPU time than basic PageRank Power method. 
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